DS05-10185-1E

MEMORY CMOS 1M × 4 BIT

HYPER PAGE MODE DYNAMIC RAM

MB81V4405C-60/-70

CMOS 1,048,576 × 4 BIT Hyper Page Mode Dynamic RAM

■ DESCRIPTION

The Fujitsu MB81V4405C is a fully decoded CMOS Dynamic RAM (DRAM) that contains 4,194,304 memory cells accessible in 4-bit increments. The MB81V4405C features the "hyper page" mode of operation which provides extended valid time for data output and higher speed random access of up to 1,024-bits of data within the same row than the fast page mode. The MB81V4405C DRAM is ideally suited for mainframe, buffers, hand-held computers video imaging equipment, and other memory applications where very low power dissipation and high bandwidth are basic requirements of the design. Since the standby current of the MB81V4405C is very small, the device can be used as a non-volatile memory in equipment that uses batteries for primary and/or auxiliary power.

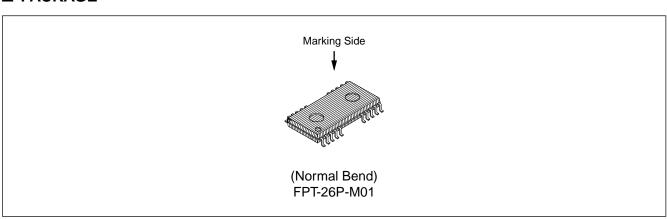
The MB81V4405C is fabricated using silicon gate CMOS and Fujitsu's advanced four-layer polysilicon process. This process, coupled with advanced stacked capacitor memory cells, reduces the possibility of soft errors and extends the time interval between memory refreshes. Clock timing requirements for the MB81V4405C are not critical and all inputs are LVTTL compatible.

■ ABSOLUTE MAXIMUM RATINGS (See NOTE.)

Parameter	Symbol	Value	Unit
Voltage at any pin relative to Vss	Vin, Vout	-0.5 to +4.6	V
Voltage of Vcc supply relative to Vss	Vcc	-0.5 to +4.6	V
Power Dissipation	P _D	1.0	W
Short Circuit Output Current	Іоит	-50 to +50	mA
Storage Temperature	Тѕтс	-55 to +125	°C

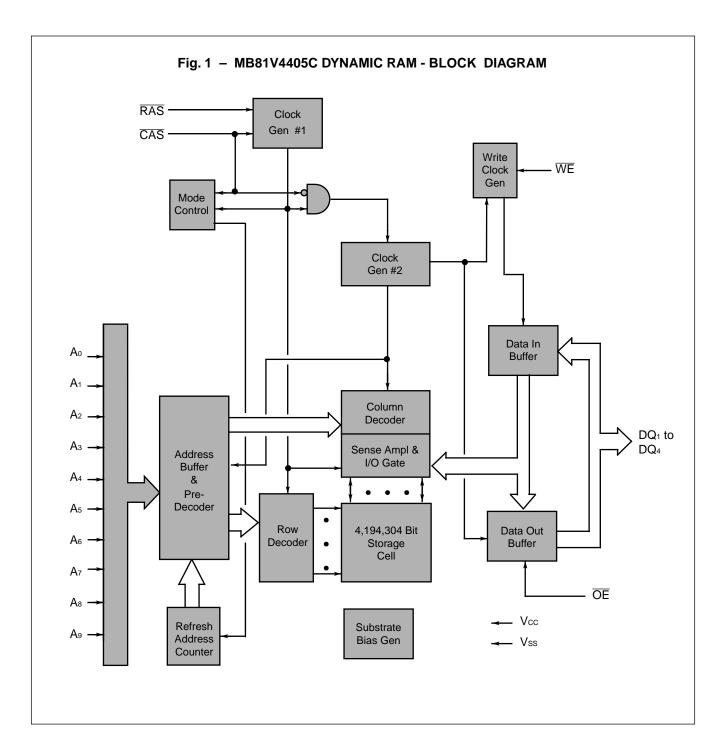
NOTE: Permanent device damage may occur if the above **Absolute Maximum Ratings** are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.


■ PRODUCT LINE & FEATURES

	Paramet	er	MB81V4405C-60	MB81V4405C-70	
RAS Access	AS Access Time		60 ns max.	70 ns max.	
CAS Access	AS Access Time		15 ns max.	20 ns max.	
Address Acce	dress Access Time		30 ns max.	35 ns max.	
Random Cycl	e Time		104 ns min.	119 ns min.	
Hyper Page M	lode Cycle Time)	25 ns min.	30 ns min.	
	Operating	Nomal Mode	220 mW max.	195 mW max.	
Low Power Dissipation	ow Power current	Hyper Page Mode	238 mW max.	198 mW max.	
Dissipation	Standby curre	ent	7.2 mW max. (LVTTL level).	/3.6 mW max. (CMOS level)	

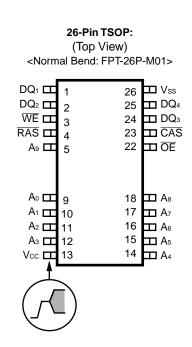
- 1,048,576 words × 4 bit organization
- Silicon gate, CMOS, Advanced-Stacked Capacitor Cell
- All input and output are LVTTL compatible
- 1024 refresh cycles every 16.4 ms
- Self refresh function


- Early write or OE controlled write capability
- RAS-only, CAS-before-RAS, or Hidden Refresh
- Hyper page mode, Read-Modify-Write capability
- On chip substrate bias generator for high performance

■ PACKAGE

Package and Ordering Information

- 26-pin plastic (300 mil) TSOP-II with normal bend leads, order as MB81V4405C-xxPFTN



■ CAPACITANCE

 $(T_A = 25^{\circ}C, f = 1 \text{ MHz})$

Parameter	Symbol	Тур.	Max.	Unit
Input Capacitance, Ao to Ao	C _{IN1}	_	5	pF
Input Capacitance, RAS, CAS, WE, OE	C _{IN2}	_	7	pF
Input/Output Capacitance, DQ1 to DQ4	Сра		7	pF

■ PIN ASSIGNMENTS AND DESCRIPTIONS

Designator	Function
DQ ₁ to DQ ₄	Data Input/ Output
WE	Write Enable.
RAS	Row address strobe.
A ₀ to A ₉	Address inputs.
Vcc	+3.3 volt power supply
ŌĒ	Output enable.
CAS	Column address strobe.
Vss	Circuit ground.

■ RECOMMENDED OPERATING CONDITIONS

Parameter	Notes	Symbol	Min.	Тур.	Max.	Unit	Ambient Operating Temp.		
Supply Voltage	1	Vcc	3.0	3.3	3.6	V			
Supply Voltage	ı	Vss	0	0	0	v	2004 7000		
Input High Voltage, all inputs	1	V _{IH}	2.0	_	Vcc +0.3	V	0°C to +70°C		
Input Low Voltage, all inputs*	1	VIL	-0.3	_	0.8	V			

^{*:} Undershoots of up to -2.0 volts with a pulse width not exceeding 20 ns are acceptable.

■ FUNCTIONAL OPERATION

ADDRESS INPUTS

Twenty input bits are required to decode any four of 4,194,304 cell addresses in the memory matrix. Since only ten address bits are available, the column and row inputs are separately strobed by \overline{CAS} and \overline{RAS} as shown in Figure 5. First, ten row address bits are input on pins A₀-through-A₉ and latched with the row address strobe (\overline{RAS}) then, ten column address bits are input and latched with the column address strobe (\overline{CAS}). Both row and column addresses must be stable on or before the falling edge of \overline{CAS} and \overline{RAS} , respectively. The address latches are of the flow-through type; thus, address information appearing after transfer (min.) + tr is automatically treated as the column address.

WRITE ENABLE

The read or write mode is determined by the logic state of \overline{WE} . When \overline{WE} is active Low, a write cycle is initiated; when \overline{WE} is High, a read cycle is selected. During the read mode, input data is ignored.

DATA INPUT

Input data is written into memory in either of three basic ways—an early write cycle, an \overline{OE} (delayed) write cycle, and a read-modify-write cycle. The falling edge of \overline{WE} or \overline{CAS} , whichever is later, serves as the input data-latch strobe. In an early write cycle, the input data (DQ₁-DQ₄) is strobed by \overline{CAS} and the setup/hold times are referenced to \overline{CAS} because \overline{WE} goes Low before \overline{CAS} . In a delayed write or a read-modify-write cycle, \overline{WE} goes Low after \overline{CAS} ; thus, input data is strobed by \overline{WE} and all setup/hold times are referenced to the write-enable signal.

DATA OUTPUT

The three-state buffers are LVTTL compatible with a fanout of one TTL loads. Polarity of the output data is identical to that of the input; the output buffers remain in the high-impedance state until the column address strobe goes Low. When a read or read-modify-write cycle is executed, valid outputs and High-Z state are obtained under the following conditions:

 t_{RAC} : from the falling edge of \overline{RAS} when t_{RCD} (max.) is satisfied.

tcac: from the falling edge of CAS when tRCD is greater than tRCD (max.).

taa : from column address input when trad is greater than trad (max.), and trad (max.) is satisfied.

toea: from the falling edge of \overline{OE} when \overline{OE} is brought Low after trac, tcac, or taa.

toez: from \overline{OE} inactive.

toff: from CAS inactive while RAS inactive.
toff: from RAS inactive while CAS inactive.
twez: from WE active while CAS inactive.

The data remains valid after either \overline{OE} is inactive, or both \overline{RAS} and \overline{CAS} are inactive, or \overline{CAS} is reactived. When an early write is executed, the output buffers remain in a high-impedance state during the entire cycle.

HYPER PAGE MODE OF OPERATION

The hyper page mode operation provides faster memory access and lower power dissipation. The hyper page mode is implemented by keeping the same row address and strobing in successive column addresses. To satisfy these conditions, \overline{RAS} is held Low for all contiguous memory cycles in which row addresses are common. For each page of memory (within column address locations), any of $1,024 \times 4$ -bits can be accessed and, when multiple MB81V4405Cs are used, \overline{CAS} is decoded to select the desired memory page. Hyper page mode operations need not be addressed sequentially and combinations of read, write, and/or read-modify-write cycles are permitted. Hyper page mode features that output remains valid when \overline{CAS} is inactive until \overline{CAS} is reactivated.

■ DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.) Notes 3

<u> </u>							
Parameter Notes		Conditions		Unit			
i Notes	Symbol	Conditions	Min.	Тур.	Max.		
1	Vон Iон = -2 mA 2.4		_	_			
1	Vol	IoL = 2 mA	_	_	0.4	V	
Input leakage current (Any input)		$0 \text{ V} \leq V_{\text{IN}} \leq 3.6 \text{ V};$ $3.0 \text{ V} \leq V_{\text{CC}} \leq 3.6 \text{ V};$ $V_{\text{SS}} = 0 \text{ V};$ All other pins not under test = 0 V	-10	_	10	μΑ	
ent	I _{O(L)}	0 V ≤ V _{OUT} ≤ 3.6 V; Data out disabled	-10	_	10		
MB81V4405C-60	RAS & CAS Cycling.				61	mA	
MB81V4405C-70	ICC1	trc = min.	_	_	54	111/-3	
LVTTL level		$\overline{RAS} = \overline{CAS} = V_{IH}$		2.0	A		
CMOS level	ICC2	$\overline{RAS} = \overline{CAS} \ge Vcc -0.2 V$	_	_	1.0	mA	
MB81V4405C-60		CAS = V _{IH} , RAS cycling;			61	A	
MB81V4405C-70	ICC3	trc = min.	_	_	54	mA	
MB81V4405C-60	1	RAS = VIL, CAS cycling;			66	Λ	
MB81V4405C-70	ICC4	thec = min.	_		55	mA	
MB81V4405C-60		RAS cycling;			49	A	
MB81V4405C-70	ICC5	t _{RC} = min.			44	mA	
MB81V4405C-60		$\overline{RAS} = \overline{CAS} \le 0.2 \text{ V}$			1000	^	
MB81V4405C-70	ICC9	Self refresh	_		1000	μА	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 VoH 1 VoL 1 VoL 1 (Any input) II(L) Ent (Any input) II(L) MB81V4405C-60 MB81V4405C-70 LVTTL level CMOS level MB81V4405C-60 MB81V4405C-70 MB81V4405C-60 MB81V4405C-70 MB81V4405C-70 MB81V4405C-60 MB81V4405C-60 MB81V4405C-60 Iccs	1 VoH IOH = −2 mA 1 VoL IoL = 2 mA 0 V ≤ VIN ≤ 3.6 V; 3.0 V ≤ VCC ≤ 3.6 V; Vss = 0 V; All other pins not under test = 0 V 1 Vol IoL = 2 mA 1 Volu IoL = 2 ma 1 V	Notes Symbol Conditions Min.	Notes Symbol Conditions 1 VoH IoH = -2 mA 2.4 — 1 VoL IoL = 2 mA — — at (Any input) II(L) 0 V ≤ Vin ≤ 3.6 V; Vss = 0 V; All other pins not under test = 0 V — — ant Io(L) 0 V ≤ Vour ≤ 3.6 V; Data out disabled — — — ant Io(L) 0 V ≤ Vour ≤ 3.6 V; Data out disabled — — — MB81V4405C-60 Icc1 RAS & CAS cycling; RAS & CAS cycling; RAS & CAS cycling; RAS & CAS & Vin — — MB81V4405C-60 Icc2 RAS & CAS & Vin, RAS cycling; RAS & CAS & Cycling; RAS &	Note Note	

■ AC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

Ma	Double Notes	Cours Is a !	MB81V4	405C-60	MB81V4	1405C-70	L les !
No.	Parameter Notes	Symbol	Min.	Max.	Min.	Max.	Unit
1	Time Between Refresh	t REF	_	16.4	_	16.4	ms
2	Random Read/Write Cycle Time	trc	104	_	119	_	ns
3	Read-Modify-Write Cycle Time	tRWC	138	_	156	_	ns
4	Access Time from RAS 6, 9	t RAC	_	60	_	70	ns
5	Access Time from CAS 7, 9	tcac	_	15	_	20	ns
6	Column Address Access Time 8, 9	taa	_	30	_	35	ns
7	Output Hold Time	tон	5	_	5	_	ns
8	Output Hold Time from CAS	tонс	5	_	5	_	ns
9	Output Buffer Turn On Delay Time	ton	0	_	0	_	ns
10	Output Buffer Turn Off Delay Time 10	t off	_	15	_	15	ns
11	Output Buffer Turn Off Delay Time from RAS	tofr	_	15	_	15	ns
12	Output Buffer Turn Off Delay Time from WE	twez	_	15	_	15	ns
13	Transition Time	t⊤	1	50	1	50	ns
14	RAS Precharge Time	t RP	40	_	45	_	ns
15	RAS Pulse Width	tras	60	100000	70	100000	ns
16	RAS Hold Time	t RSH	15	_	20	_	ns
17	CAS to RAS Precharge Time 21	t CRP	0	_	0		ns
18	RAS to CAS Delay Time 11, 12, 22	trcd	14	45	14	50	ns
19	CAS Pulse Width	tcas	10	10000	10	10000	ns
20	CAS Hold Time	t csH	40	_	50		ns
21	CAS Precharge Time (Normal) 19	t CPN	10	_	10		ns
22	Row Address Set Up Time	t asr	0	_	0	_	ns
23	Row Address Hold Time	t RAH	10	_	10	_	ns
24	Column Address Set Up Time	tasc	0	_	0	_	ns
25	Column Address Hold Time	t CAH	10	_	10	_	ns
26	RAS to Column Address Delay Time	tRAD	12	30	12	35	ns
27	Column Address to RAS Lead Time	tral	30	_	35	_	ns
28	Column Address to CAS Lead Time	t CAL	23	_	28		ns
29	Read Command Set Up Time	trcs	0	_	0	_	ns
30	Read Command Hold Time Referenced to RAS	t rrh	0	_	0	_	ns

(Continued)

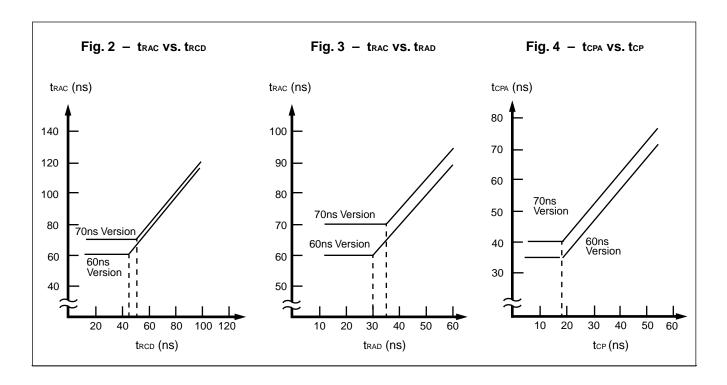
■ AC CHARACTERISTICS (Continued)

(At recommended operating conditions unless otherwise noted.)

Notes 3, 4, 5

Na	Deventor	Nataa	Comple at	MB81V4	405C-60	MB81V4	405C-70	Unit
No.	Parameter	Notes	Symbol	Min.	Max.	Min.	Max.	Unit
31	Read Command Hold Time Referenced to CAS	14	t RCH	0	_	0	_	ns
32	Write Command Set Up Time	15	twcs	0	_	0	_	ns
33	Write Command Hold Time		t wcH	10	_	10	_	ns
34	WE Pulse Width		t wp	10	_	10	_	ns
35	Write Command to RAS Lead T	ime	t RWL	15	_	18	_	ns
36	Write Command to CAS Lead T	ime	tcwL	10	_	10	_	ns
37	DIN Set Up Time		tos	0	_	0	_	ns
38	DIN Hold Time		tон	10	_	10	_	ns
39	RAS to WE Delay Time		t RWD	77	_	87	_	ns
40	CAS to WE Delay Time		tcwp	32	_	37	_	ns
41	Column Address to WE Delay T	ime	t awd	47	_	52	_	ns
42	RAS Precharge Time to CAS Ac (Refresh Cycles)	tive Time	t rpc	5	_	5	_	ns
43	CAS Set Up Time for CAS-befor Refresh	e-RAS	tcsr	0	_	0	_	ns
44	CAS Hold Time for CAS-before- Refresh	RAS	t chr	10	_	10	_	ns
45	WE Set Up Time from RAS	20	twsR	0	_	0	_	ns
46	WE Hold Time from RAS	20	t whr	10	_	10	_	ns
47	Access Time from OE	9	toea	_	15	_	20	ns
48	Output Buffer Turn Off Delay from OE	10	toez	_	15	_	15	ns
49	OE to RAS Lead Time for Valid	Data	toel	10	_	10	_	ns
50	OE to CAS Lead Time		t coL	5	_	5	_	ns
51	OE Hold Time Referenced to WE	16	tоен	0	_	0	_	ns
52	OE to Data In Delay Time		toed	15	_	15	_	ns
53	DIN to CAS Delay Time	17	tozc	0	_	0	_	ns
54	DIN to OE Delay Time	17	t DZO	0	_	0	_	ns
55	OE Precharge Time		toep	10	_	10	_	ns
56	OE Hold Time Referenced to CA	\S	toech	10	_	10	_	ns
57	WE Precharge Time		t wpz	10	_	10	_	ns
58	WE to Data In Delay Time		twed	15	_	15	_	ns
59	RAS to Data In Delay Time		trdd	15	_	15	_	ns
60	CAS to Data In Delay Time		tcdd	15	_	15	_	ns

(Continued)

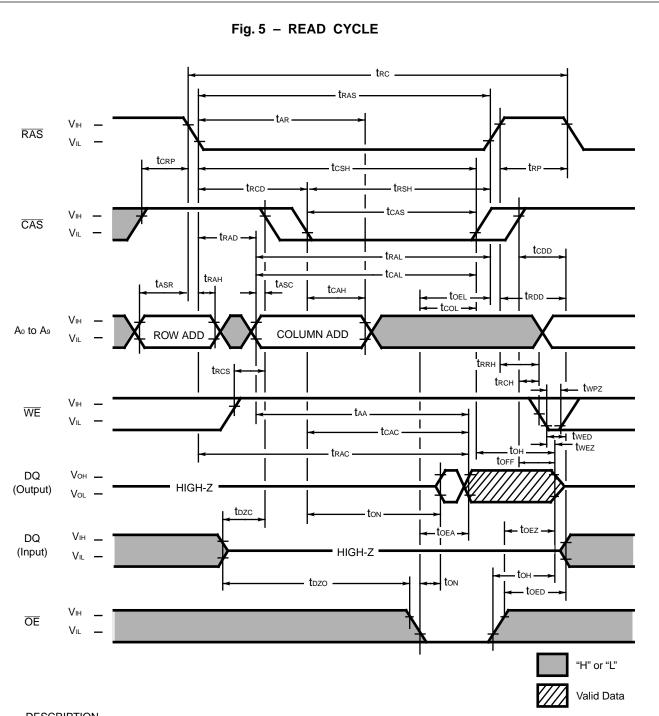

■ AC CHARACTERISTICS (Continued)

(At recommended operating conditions unless otherwise noted.)

Notes 3, 4, 5

No	Daramatar Notes	Cymbol	MB81V4	405C-60	MB81V4	405C-70	Unit
No.	Parameter Notes	Symbol	Min.	Max.	Min.	Max.	Unit
61	RAS to Columunn Address Hold Time	t ar	26	_	26	_	ns
62	Write Command Hold Time Referenced to RAS	t wcr	24	_	24	_	ns
63	Data Input Hold Time Referenced to RAS	t DHR	24	_	24	_	ns
64	Hyper Page Mode Read/Write Cycle Time	t HPC	25	_	30	_	ns
65	Hyper Page Mode Read-Modify-Write Cycle Time	t HPRWC	66	_	71	_	ns
66	Access Time from CAS Precharge 9, 18	t CPA	_	35	_	40	ns
67	Hyper Page Mode CAS Precharge Time	t CP	10	_	10	_	ns
68	Hyper Page Mode RAS Pulse Width	t rasp		200000	_	200000	ns
69	Hyper Page Mode RAS Hold Time from CAS Precharge	t RHCP	35	_	40	_	ns
70	Hyper Page Mode CAS Precharge to WE Delay Time	t cpwd	52	_	57	_	ns

- Notes: 1. Referenced to Vss.
 - 2. lcc depends on the output load conditions and cycle rates; The specified values are obtained with the output open.
 - lcc depends on the number of address change as $\overline{RAS} = V_{IL}$ and $\overline{CAS} = V_{IH}$. lcc1, lcc3 and lcc5 are specified at one time of address change during $\overline{RAS} = V_{IL}$ and $\overline{CAS} = V_{IH}$. lcc4 is specified at one time of address change during one Page cycle.
 - 3. An Initial pause (RAS = CAS = V_{IH}) of 200 μs is required after power-up followed by any eight RAS-only cycles before proper device operation is achieved. In case of using internal refresh counter, a minimum of eight CAS-before-RAS initialization cycles instead of 8 RAS cycles are required.
 - 4. AC characteristics assume $t_T = 2$ ns.
 - 5. V_{IH} (min.) and V_{IL} (max.) are reference levels for measuring timing of input signals. Also transition times are measured between V_{IH} (min.) and V_{IL} (max.).
 - 6. Assumes that tRCD ≤ tRCD (max.), tRAD ≤ tRAD (max.). If tRCD is greater than the maximum recommended value shown in this table, tRAC will be increased by the amount that tRCD exceeds the value shown. Refer to Fig. 2 and 3.
 - 7. If $trcd \ge trcd (max.)$, $trad \ge trad (max.)$, and $tasc \ge trad trad tradectorial tradec$
 - 8. If $t_{RAD} \ge t_{RAD}$ (max.) and $t_{ASC} \le t_{AA} t_{CAC} t_{T}$, access time is t_{AA} .
 - 9. Measured with a load equivalent to one TTL loads and 100 pF.
 - 10. toff and toez is specified that output buffer change to high impedance state.
 - 11. Operation within the trod (max.) limit ensures that trac (max.) can be met. trod (max.) is specified as a reference point only; if trod is greater than the specified trod (max.) limit, access time is controlled exclusively by trac or trad.
 - 12. t_{RCD} (min.) = t_{RAH} (min.) + $2t_{T}$ + t_{ASC} (min.).
 - 13. Operation within the trad (max.) limit ensures that trac (max.) can be met. trad (max.) is specified as a reference point only; if trad is greater than the specified trad (max.) limit, access time is controlled exclusively by trac or trad.
 - 14. Either trrh or trch must be satisfied for a read cycle.
 - 15. twcs is specified as a reference point only. If twcs ≥ twcs (min.) the data output pin will remain High-Z state through entire cycle.
 - 16. Assumes that twcs < twcs (min.).
 - 17. Either tozc or tozo must be satisfied.
 - 18. tcpa is access time from the selection of a new column address (that is caused by changing CAS from "L" to "H"). Therefore, if tcp is long, tcpa is longer than tcpa (max.) as shown in Fig. 4.
 - 19. Assumes that CAS-before-RAS refresh.
 - 20. Assumes that Test mode function.
 - 21. The last \overline{CAS} rising edge.
 - 22. The first CAS falling edge.



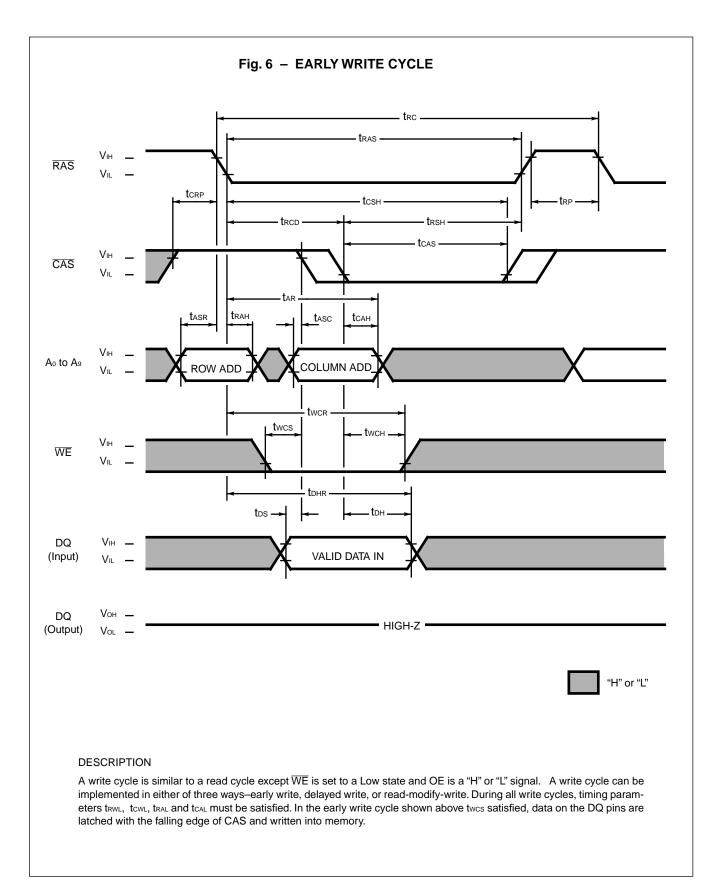
■ FUNCTIONAL TRUTH TABLE

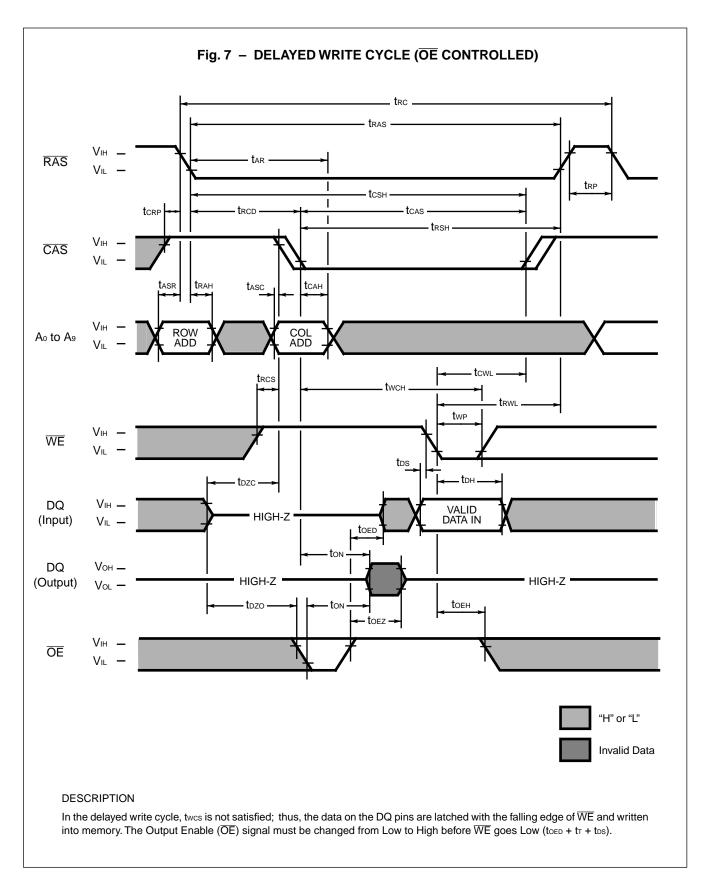
Operation Mode	Clock Input			Address		Input Data		Refresh	Note	
Operation Mode	RAS	CAS	WE	ŌΕ	Row	Column	Input	Output	Kellesii	Note
Standby	Н	Н	Х	Х	_	_	_	High-Z	_	
Read Cycle	L	L	Н	L	Valid	Valid	_	Valid	Yes*	trcs ≥ trcs (min.)
Write Cycle (Early Write)	L	L	L	Х	Valid	Valid	Valid	High-Z	Yes*	twcs ≥ twcs (min.)
Read-Modify-Write Cycle	L	L	H→L	L→H	Valid	Valid	Valid	Valid	Yes*	tcwo ≥ tcwo (min.)
RAS-only Refresh Cycle	L	Н	Х	Х	Valid	_	_	High-Z	Yes	
CAS-before-RAS Refresh Cycle	L	L	Н	Х	_	_	_	High-Z	Yes	tcsr ≥ tcsr (min.)
Hidden Refresh Cycle	H→L	L	Н	L	_	_	_	Valid	Yes	Previous data is kept
Test mode Set Cycle (CBR)	L	L	L	Х	_	_	_	High-Z	Yes	$t_{CSR} \ge t_{CSR} \text{ (min.)}$ $t_{WSR} \ge t_{WSR} \text{ (min.)}$
Test mode Set Cycle (Hidden)	H→L	L	L	Х	_	_	_	Valid	Yes	$t_{CSR} \ge t_{CSR}$ (min.) $t_{WSR} \ge t_{WSR}$ (min.)

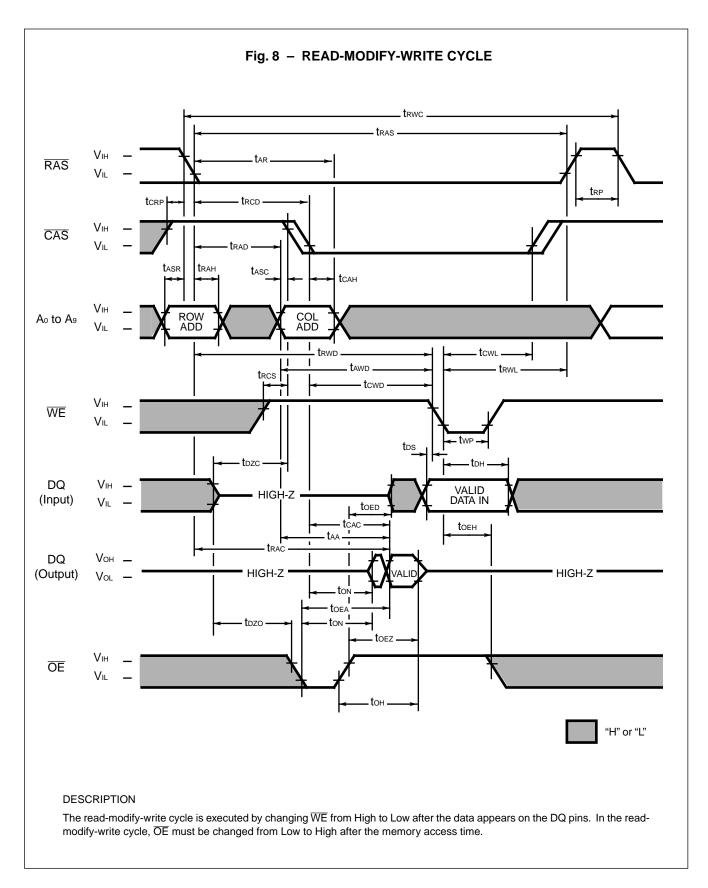
X; "H" or "L"

^{*;} It is impossible in Hyper Page Mode.

DESCRIPTION

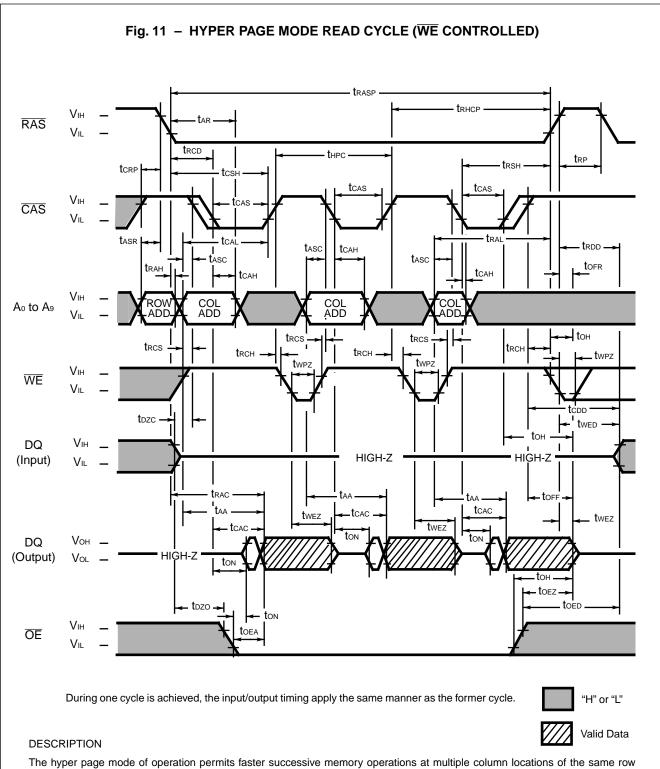

To implement a read operation, a valid address is latched by the RAS and CAS address strobes and with WE set to a High level and $\overline{\text{OE}}$ set to a Low level, the output is valid once the memory access time has elapsed. The access time is determined by $\overline{\text{RAS}}(t_{\text{RAC}})$, CAS (tcac), OE (toea) or column addresses (taa) under the following conditions:

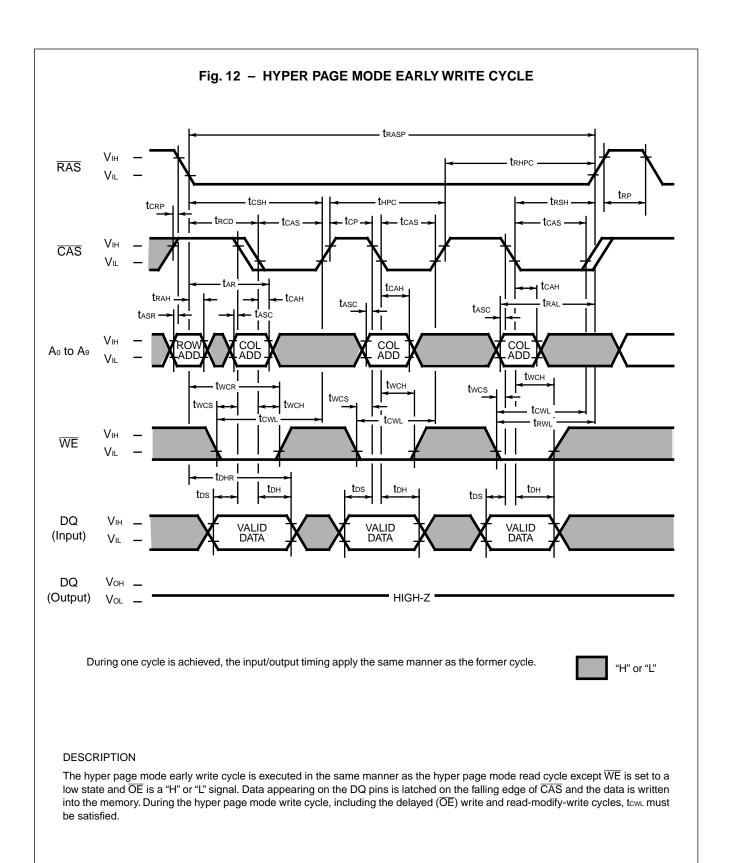

If $t_{RCD} > t_{RCD}$ (max.), access time = t_{CAC} .

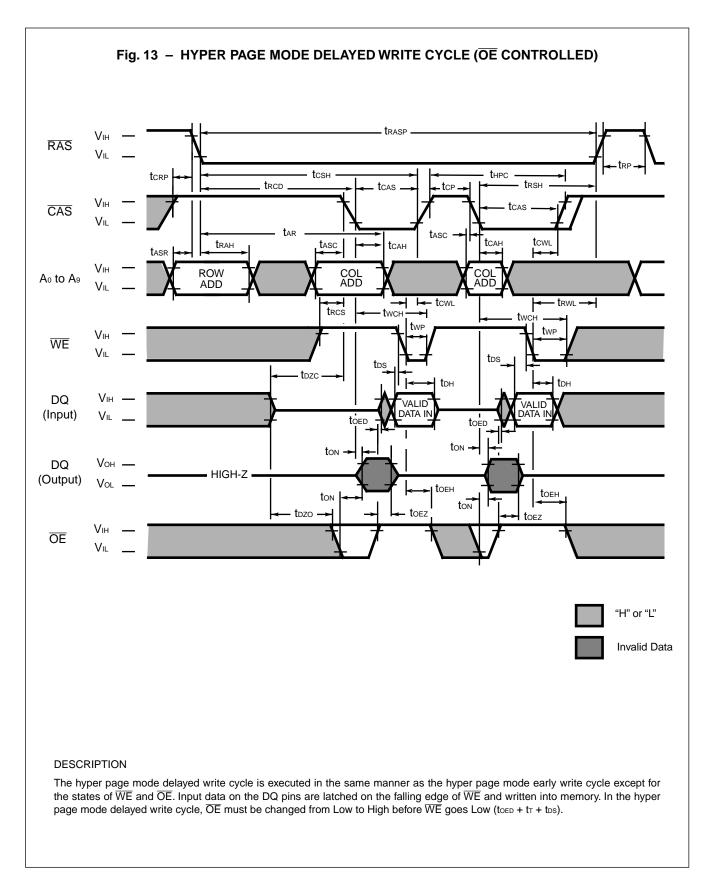

If $t_{RAD} > t_{RAD}$ (max.), access time = t_{AA} .

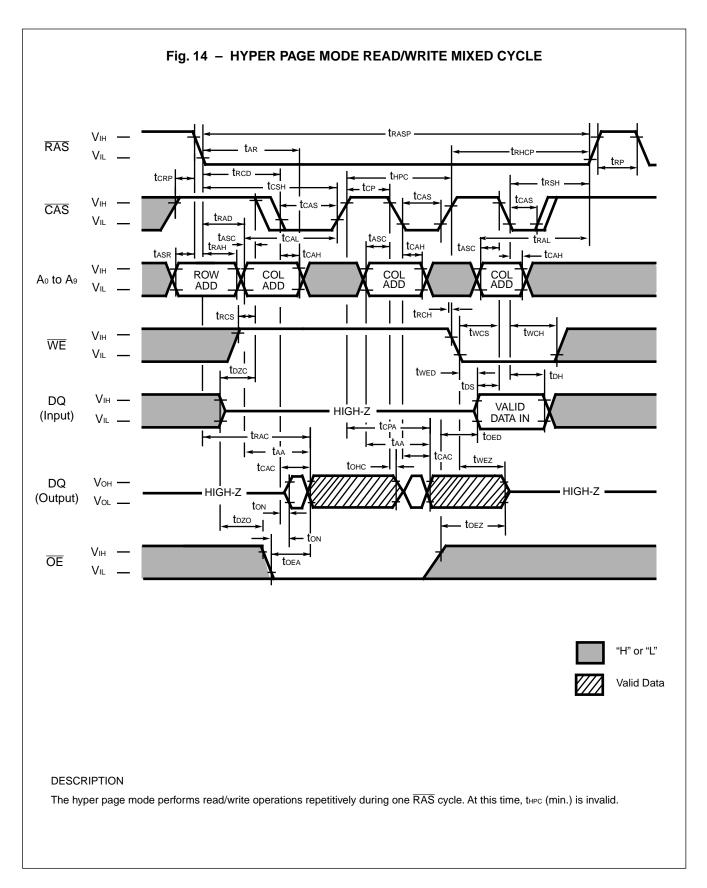

If \overline{OE} is brought Low after trac, tcac, or taa (whichever occurs later), access time = toEA.

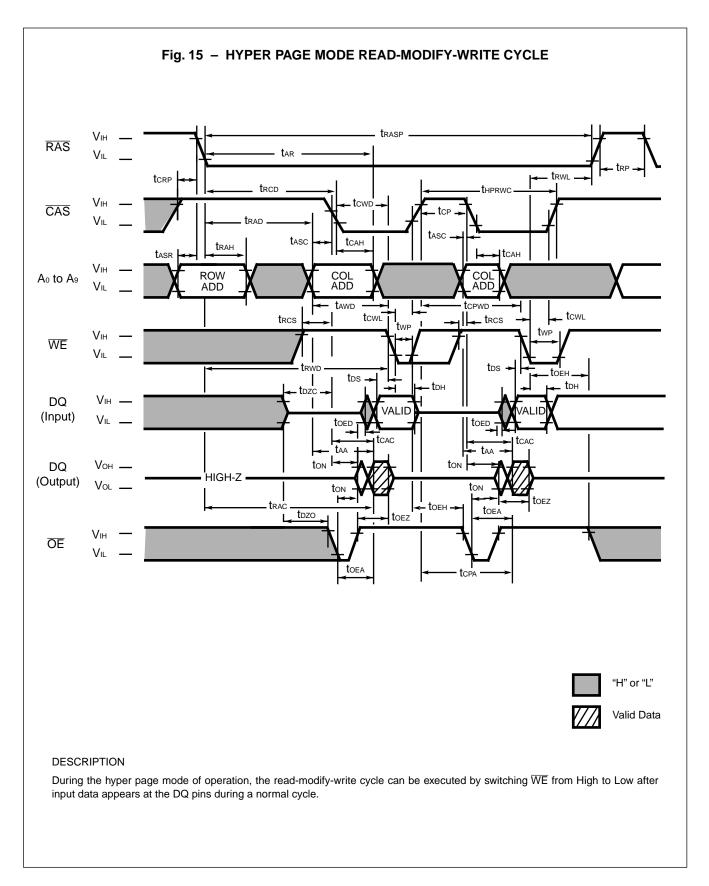

However, if either OE or both RAS and CAS or OE goes High, the output returns to a high-impedance state after toh is satisfied.

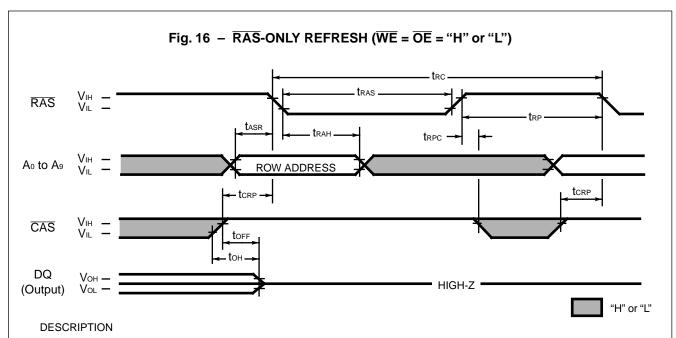


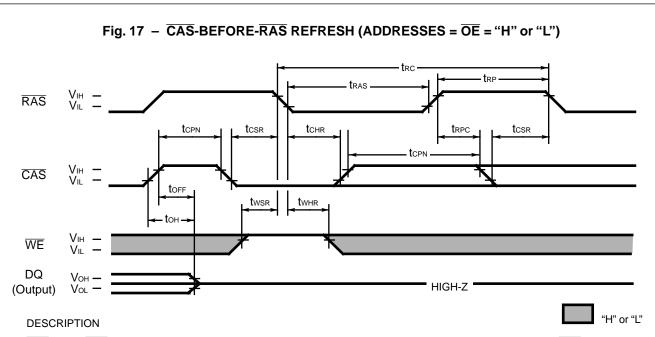


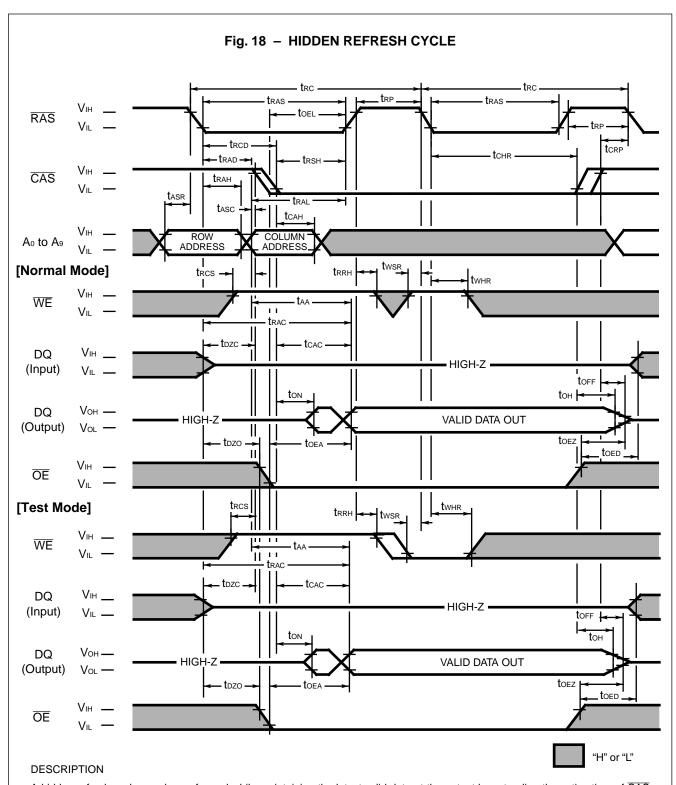




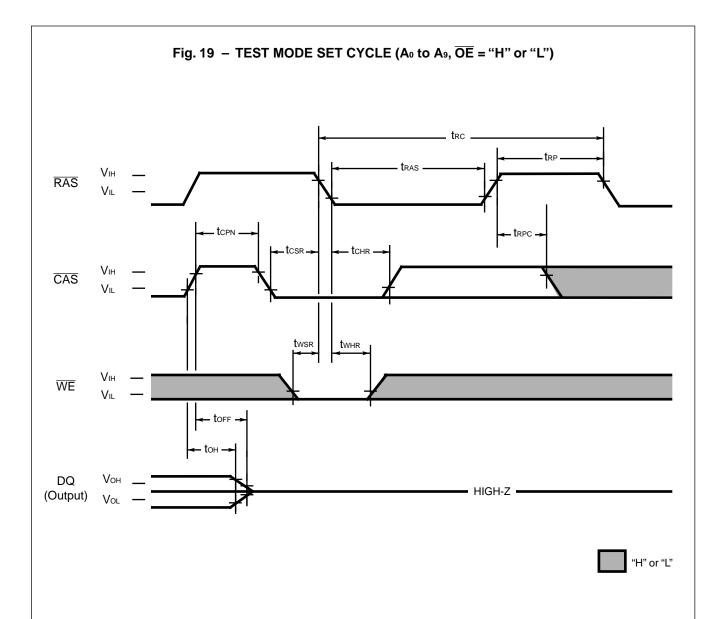

The hyper page mode of operation permits faster successive memory operations at multiple column locations of the same row address. This operation is performed by strobing in the row address and maintaining \overline{RAS} at a Low level and \overline{WE} at a High level during all successive memory cycles in which the row address is latched. The address time is determined by tcac, taa, tcpa, or toea, whichever one is the latest in occurring.


To obtain a high impedance state, confirm either of the following conditions, $\overline{\text{OE}}$ set to a high level or $\overline{\text{WE}}$ set to a low level after $\overline{\text{CAS}}$ set to a high level or $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ set to a high level.




Refresh of RAM memory cells is accomplished by performing a read, a write, or a read-modify-write cycle at each of 1,024 row addresses every 16.4-milliseconds. Three refresh modes are available: RAS-only refresh, CAS-before-RAS refresh, and hidden refresh.

 \overline{RAS} -only refresh is performed by keeping \overline{RAS} Low and \overline{CAS} High throughout the cycle; the row address to be refreshed is latched on the falling edge of \overline{RAS} . During \overline{RAS} -only refresh, DQ pins are kept in a high-impedance state.


CAS-before-RAS refresh is an on-chip refresh capability that eliminates the need for external refresh addresses. If CAS is held Low for the specified setup time (tcsr) before RAS goes Low, the on-chip refresh control clock generators and refresh address counter are enabled. An internal refresh operation automatically occurs and the refresh address counter is internally incremented in preparation for the next CAS-before-RAS refresh operation.

WE must be held High for the specified set up time (twsk) before RAS goes Low in order not to enter "TEST MODE".

A hidden refresh cycle may be performed while maintaining the latest valid data at the output by extending the active time of $\overline{\text{CAS}}$ and cycling $\overline{\text{RAS}}$. The refresh row address is provided by the on-chip refresh address counter. This eliminates the need for the external row address that is required by DRAMs that do not have $\overline{\text{CAS}}$ -before- $\overline{\text{RAS}}$ refresh capability.

WE must be held High for the specified set up time (twsn) before RAS goes Low in order not to enter "test mode".

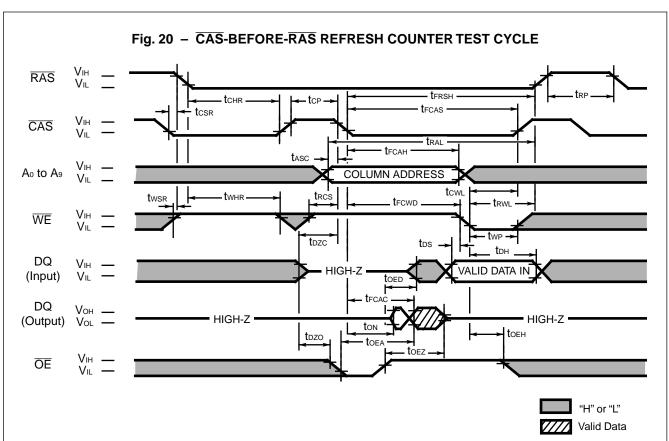
DESCRIPTION

Test Mode;

The purpose of this test mode is to reduce device test time to half of that required to test the device conventionally.

The test mode function is entered by performing a $\overline{\text{WE}}$ and $\overline{\text{CAS}}$ -before- $\overline{\text{RAS}}$ (WCBR) refresh for the entry cycle.

In the test mode, read and write operations are executed in units of eights bits which are selected by the address combination of CAo. In the write mode, data is written into eight cells simultaneously. But the data must be input from all DQ pins. In the read mode, the data of eight cells at the selected addresses are read out from DQ and checked in the following manner.


When the eight bits are all "L" or all "H", a "H" level is output.

When the eight bits show a combination of "L" and "H", a "L" level is output.

The test mode function is exited by performing a RAS-only refresh or a CAS-before-RAS refresh for the exit cycle.

In test mode operation, the following parameters are delayed approximately 5 ns from the specified value in the data sheet.

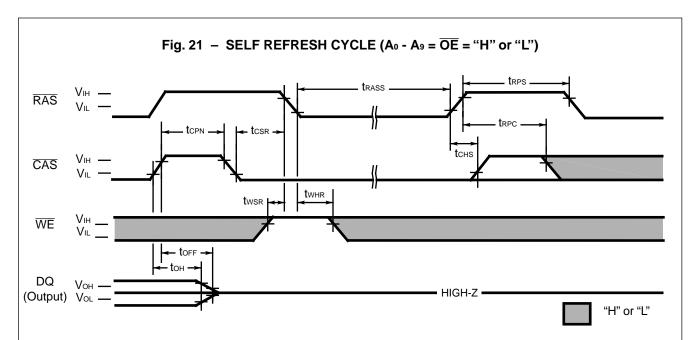
trc, trwc, trac, taa, tras, tcsh, tral, trwd, tawd, tpc, tprwc, tcpa, trhcp, tcpwd

DESCRIPTION

A special timing sequence using the $\overline{\text{CAS}}$ -before- $\overline{\text{RAS}}$ refresh counter test cycle provides a convenient method to verify the functionality of $\overline{\text{CAS}}$ -before- $\overline{\text{RAS}}$ refresh cycle. $\overline{\text{CAS}}$ makes a transition from High to Low while $\overline{\text{RAS}}$ is held Low, read and write operations are enabled as shown above. Row and column addresses are defined as follows:

Row Address: Bits A₀ through A₉ are defined by the on-chip refresh counter.

Column Address: Bits A₀ through A₉ are defined by latching levels on A₀-A₉ at the second falling edge of CAS.


The CAS-before-RAS Counter Test procedure is as follows;

- 1) Initialize the internal refresh address counter by using 8 RAS only refresh cycles.
- 2) Use the same column address throughout the test.
- 3) Write "0" to all 1024 row addresses at the same column address by using normal write cycles.
- 4) Read "0" written in procedure 3) and check; simultaneously write "1" to the same addresses by using CAS-before-RAS refresh counter test (read-modify-write cycles). Repeat this procedure 1024 times with addresses generated by the internal refresh address counter.
- 5) Read and check data written in procedure 4) by using normal read cycle for all 1024 memory locations.
- 6) Reverse test data and repeat procedures 3), 4), and 5).

(At recommended operating conditions unless otherwise noted.)

No.	Parameter	Symbol	MB81V4	405C-60	MB81V4	405C-70	Unit
NO.	Parameter	Syllibol	Min.	Max.	Min.	Max.	Ollic
90	Access Time from CAS	t FCAC		35		40	ns
91	Column Address Hold Time	t FCAH	30		30	_	ns
92	CAS to WE Delay Time	trcwd	55		60		ns
93	CAS Pulse Width	t FCAS	35	_	40	_	ns
94	RAS Hold Time	t FRSH	35	_	40	_	ns

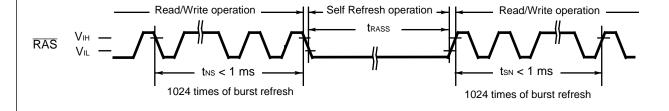
Note: Assumes that $\overline{\text{CAS}}$ -before- $\overline{\text{RAS}}$ refresh counter test cycle only.

(At recommended operating conditions unless otherwise noted.)

	No. Parameter		MB81V4	405C-60	MB81V4			
No.	Parameter	Symbol	Min.	Max.	Min.	Max.	Unit	
100	RAS Pulse Width	trass	100	_	100	_	μs	
101	RAS Precharge Time	t RPS	104	_	119	_	ns	
102	CAS Hold Time	tснs	-50	_	-50	_	ns	

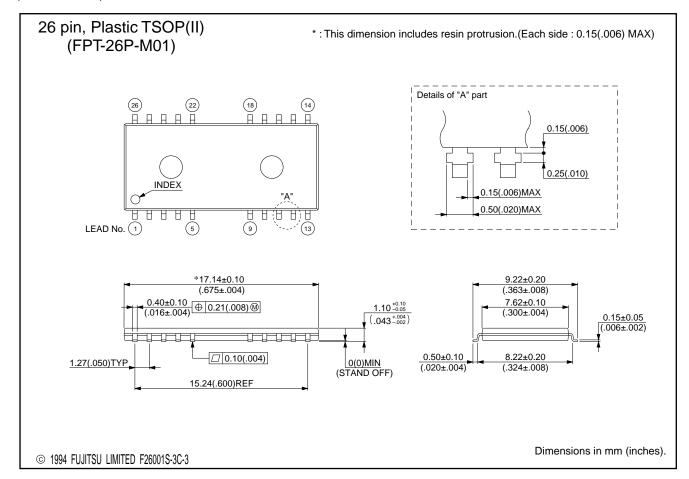
Note: Assumes self refresh cycle only

DESCRIPTION


The self refresh cycle provides a refresh operation without external clock and external Address. Self refresh control circuit on chip is operated in the self refresh cycle and refresh operation can be automatically executed using internal refresh address counter. If \overline{CAS} goes to "L" before \overline{RAS} goes to "L" (CBR) and the condition of \overline{CAS} "L" and \overline{RAS} "L" is kept for term of t_{RASS} (more than 100 μ s), the device can be entered the self refresh cycle. And after that, refresh operation is automatically executed per fixed interval using internal refresh address counter during " \overline{RAS} = L" and " \overline{CAS} = L".

And exit from self refresh cycle is performed by toggling of RAS and CAS to "H" with specifying tohs min..

Restruction for Self refresh operation;


For self refresh operation, the notice below must be considered.

- 1) In the case that distribute CBR refresh are operated in read/write cycles
 Self refresh cycles can be executed without special rule if 1024 cycles of distribute CBR refresh are executed within tree max..
- 2) In the case that burst CBR refresh or RAS only refresh are operated in read/write cycles 1024 times of burst CBR refresh or 1024 times of burst RAS only refresh must be executed before and after Self refresh cycles.

■ PACKAGE DIMENSIONS

(Suffix: -PFTN)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-88, Japan

Tel: (044) 754-3763 Fax: (044) 754-3329

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A.

Tel: (408) 922-9000 Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 63303 Dreieich-Buchschlag Germany

Tel: (06103) 690-0 Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED #05-08, 151 Lorong Chuan New Tech Park

Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220 All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

F9703

© FUJITSU LIMITED Printed in Japan